
Advanced Mathematical Models & Applications

Vol.8, No.2, 2023, pp.140-156

ANALYSIS OF A TEN COMPARTMENTAL MATHEMATICAL
MODEL OF MALARIA TRANSMISSION

ID Gizachew Tirite Gellow1,2∗, ID Justin Manango W. Munganga1, ID Hossein Jafari1

1Department of Mathematical Sciences, University of South Africa, UNISA0003, South Africa
2Department of Mathematical Sciences, Wollo University, Dessie, Ethiopia

Abstract. In this paper, we analyse a ten compartmental mathematical model for malaria transmission which

include non-immune and semi-immune humans. We obtain an explicit formula for the basic reproduction number

R0 which is a function of the weight of the transmission from non-immune humans to mosquito and from non-

immune humans to mosquito, and the weight of the transmission from semi-immune humans to mosquito and

from mosquito to semi-immune humans. The model outcome confirms that the disease free equilibrium (DFE)

is globally asymptotically stable when R0 < 1 and and it is unstable when R0 > 1. We also prove that the

endemic Equilibrium (EE) is unstable R0 < 1 and it is globally asymptotical stable when R0 > 1. We discuss

the possibility of a control for malaria transmission throughout a definite sub- group such as non-immune or

semi-immune or mosquitoes.
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1 Introduction

Malaria is a parasite disease caused and transmitted by the bite of an infected female anopheles
mosquito; it’s a result of infection with one or more Plasmodium species, pathogenic agents of
‘protozoan’ types. Mathematical models provide the means to generate evidence-based infor-
mation on malaria disease control and play an important role in understanding the dynamics
of the disease. A major extension of mathematical models is described in Macdonald’s 1957
book Macdonald (1957). In a later review, Anderson and May in Anderson and May (1991)
revisited many of the ideas discussed by Aron and May Aron and May (1982), they looked at
different control strategies, discussing the effects of a vaccine and the reduction of transmis-
sion rates on the malaria age-prevalence profile of the human population. Other reviews on
mathematical modelling in malaria include in Ducrot et al. (2009). They surveyed various data
sets to statistically approximate parameters such as inoculation rates, rates of recovery and loss
of immunity in humans, human-biting rates of mosquitoes and infectivity and susceptibility of
humans and mosquitoes. With all these and others models at hand, it is not a trivial matter to
infer the crucial features of the disease, and get a coherent understanding of the development of
the models from interactions between the vector and host. An attempt has been made here to
elaborate the evolution of these models by considering some representative mathematical models
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that include the increasing complexities of host-vector-parasite interactions. The major advan-
tage of these early models was to provide a suitable control strategy through the transmission
threshold criterion, which is based on the reproductive capacity of the parasite, and termed as
basic reproductive number R0.In this paper, we formulate a ten compartmental mathematical
model of malaria transmission, which includes include non-immune and semi-immune humans.
We investigate the possibility of a control of malaria through one of the three host type by
calculating the control reproduction number specific to each host type.

The rest of paper is organised as follows: in section 1, we formulate the model and we
provide. In section 3, we prove the wellposedness of the model. We determine the equilibria
and calculate the reproduction number of the model in section 4 and in section 5 we analyse
the stability of the disease free equilibrium and the endemic equilibrium. In section 6, some
numerical analysis are done. We give concluding remarks in section 7.

2 Formulation of the Model

In order to analysis the ten compartmental mathematical modelling of malaria transmission. We
divided the human population in to two groups. The first group named non-immune human,
includes every humans who do not have resistance against malaria. The second group named
semi-immune human is the class of humans who have at least acquired immunity in their life even
if they lost it. Since the concept of natural immunisation is based on memory, the second group
is supposed to be less vulnerable. We assume that, the human population, as whole, is sub-
divided into susceptible non-immune (Se), exposed non-immune (Ee), infectious non-immune
(Ie), susceptible semi-immune (Sa), exposed semi-immune (Ea), infectious semi-immune (Ia),
recovery semi-immune (Ra). Thus, the total human population Nh(t) = Se + Ee + Ie + Sa +
Sa + Ea + Ia + Ra. We sub-divide the mosquito population into three subclasses: susceptible
mosquitoes Sv, exposed mosquitoes Ev and infectious mosquitoes Iv. The mosquitoes stay
infectious for life and do not recover. Thus, the total mosquitoes population Nv(t) = Sv+Ev+Iv.
We assume that the infectious non-immune humans develop resistance and enter the recovered
class. Disease does not kill the mosquitoes. There is no malaria transmission between humans
and there is no malaria transmission between mosquitoes. The natural death rate and birth
rate are considered. There are infection transmissions from Iv to Se, from Iv to Sa, from Ie to
Sv, and from Ia to Sv. We denote the non-immune human population by e, the semi-immune
human population by a, and the mosquito population by v throughout this paper. When
a susceptible mosquito bites an infectious non-immune humans and the susceptible mosquito
could be become exposed moves to exposed mosquitoes, or when an infectious mosquito bites a
susceptible humans either non-immune or semi-immune humans the parasite enters to human
and the susceptible humans moves to their own exposed group. The non-immune susceptible
human class is increased by non-immune human by birth through birth at per capita birth at
rate of λe, and leave the Se class with the rate of βe and µh. The non-immune humans Ee class
is increased by new infectious at a rate of βe and is decreased ar rate of γe and µh by becoming
infectious and death respectively. The population enter the Ie class at a rate γe, and leaves at
rates αe and µh. The semi-immune human enters into the susceptible semi-immune human class
through birth at a rate (λh − λe) and from recovery of humans at the rate of Ωa, and leave the
class Sa with the rate of βa and µh. The semi-resistance humans enter the Ea class with the rate
of βa and leave the Ea class with the rate of γa and µh. Exposed semi-immune humans enter
the Ia class at a rate γa, and leave the Ia class at rates αa and µh. The infectious semi-immune
humans recover at a rate αa to enter the Ra class and they leave the class Ra at rates µh and
Ωa. Mosquitoes are recruited into the susceptible class by birth at a per capita birth rate of λv
and leave the class Sv at rates βv and µv. Susceptible mosquitoes enter to the class Ev with βv
and leave it with rates γv and µv. Exposed mosquitoes enter the infectious class at a rate γv
and leave the infectious class at a rates µv. We assume that all the parameters are positive.
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Table 1: The explanation of state variables for malaria model of ten dimensional.

Variables The explanation of the state variables

Se Susceptible non-immune humans .

Ee Exposed non- immune humans.

Ie Infectious non-immune humans.

Sa Susceptible semi-immune humans.

Ea Exposed semi-immune humans.

Ia Infectious semi-immune humans.

Ra Recovery of humans.

Sv The susceptible mosquitoes.

Ev exposed mosquitoes.

Iv Infectious mosquitoes.

The state variables and the parameter variables for our model are summarised in brief in
Table (1) and (2) respectively. Using the standard incidence as in the model Ngwa (2004),
we define and notify the infection incidences as: βe = ΥϕveIv is the infection incidences from
mosquitoes to non-immune humans, βa = ΥϕvaIv is the infection incidences from mosquitoes to
semi-immune humans and βv = (ϕevIe + ϕavIa) Υ is the disease occurrence from semi-immune
humans or non-immune humans to mosquitoes, then βv is given by the amount of the power
of disease from Ia and Ie. From the compartmental representation in Figure 1, we derive the
following system differential equations:

dSe
dt

= λeNh − Se (ΥϕveIv + µh) , (1)

dEe
dt

= ΥIvϕveSe − Ee (γe + µh) , (2)

dIe
dt

= γeEe − Ie (αe + µh) , (3)

dSa
dt

= (λh − λe)Nh + ΩaRa − Sa (ΥϕvaIv + µh) , (4)

dEa
dt

= SaΥϕvaIv − Ea (γa + µh) , (5)

dIa
dt

= γaEa − Ia (µh + αa) , (6)

dRa
dt

= (αa + αe) Ia − (Ωa + µh)Ra, (7)

dSv
dt

= λvNv − SvϕevIeΥ− Svµv − ϕavSvΥIa, (8)

dEv
dt

= (ϕevIe + ϕavIa) ΥSv − Ev (γv + µv) , (9)

dIv
dt

= γvEv − Ivµv. (10)

with the initial positive conditions

Se (0) = Se0, Ee (0) = Ee0, Ie (0) = Ie0, Sa (0) = Sa0, Ea (0) = Ea0,

Ia (0) = Ia0, Ra (0) = Ra0, Sv (0) = Sv0, Ev (0) = Ev0, Iv (0) = Iv0
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Table 2: The explanation of parameters for malaria model of ten dimensional.

Parameter The explanation of the parameter

αe The rate at which non-immune human progress to recovery.

λh Per capita birth rate of human.

γe The rate at which non-immune human progress to infective.

λe A per capita birth rate of non-immune human.(λh ≥ λe)
λv A per capita birth rate of mosquitoes.

αa The rate of the infective non-immune human progress to recovery.

γa The rate at which semi-immune human progress to infective.

γv The rate at which mosquito progress to infective.

λh A per capita delivery rate of human.

Ωa The rate at which recovered humans progress to susceptible.

Υ The number of bites

µh The death rate of humans.

µv The death rate of of mosquitoes.

ϕav The probability that the infectious will transfer from Ia to the Sv.

ϕev The probability that the infectious will transfer from Ie to the Sv.

ϕva The probability that the infectious will transfer from Iv to Sa .

ϕve The probability that the infectious will transfer from Iv to Se.

3 Existence of the solution

Theorem 1. The malaria model (1)-(10) has a unique globally defined solution, which remains
in the domain Ω = Ω1 × Ω2 for all time t ≥ 0, where

Ω1 =
{(

Se
Nh
, Ee
Nh
, IeNh

, Sa
Nh
, Ea
Nh
, IaNh

, Ra
Nh
, Sv
Nv
, Ev
Nv
, IvNv

)
∈ [0, 1]10 : 0 ≤ Sv

Nv
+ Ev

Nv
+ Iv

Nv
≤ 1

and 0 ≤ Sa
Nh

+ Ea
Nh

+ Ia
Nh

+ Ra
Nh

+ Se
Nh

+ Ee
Nh

+ Ie
Nh
≤ 1
}

Ω2 =

{
(Nh, Nv) ∈ R2 : 0 < Nh ≤

λh−µh+
√

(λh−µh)2+4µh
µh

and 0 < Nv ≤ λv−µv
µv
≤ 1

}
Proof. The local existence of the solution follows from the regularity of the function g =
(g1, g2, .., g10), where dxi

dt = gi(t), i = 1, 2, ..., 10, are continuous differentiable in the domain
Ω1. We first show that Ω1 is forward-invariant for all (Nh, Nv) ∈ Ω2. It is easy to see that if
xi = 0 then dxi

dt = gi(t) ≥ 0, i = 1, 2, ..., 10. It follows that if

Sv
Nv

+
Ev
Nv

+
Iv
Nv

= 0⇒ d

dt

(
Sv
Nv

)
+
d

dt

(
Ev
Nv

)
+
d

dt

(
Iv
Nv

)
≥ 0

and if Sa
Nh

+ Ea
Nh

+ Ia
Nh

+ Ra
Nh

+ Se
Nh

+ Ee
Nh

+ Ie
Nh

= 0 then Sa
Nh

+ Ea
Nh

+ Ia
Nh

+ Ra
Nh

+ Se
Nh

+ Ee
Nh

+ Ie
Nh
≥

0. Moreover, if Sv
Nv

+ Ev
Nv

+ Iv
Nv

= 1 then d
dt

(
Sv
Nv

)
+ d

dt

(
Ev
Nv

)
+ d

dt

(
Iv
Nv

)
= −λv < 0 and if

Sa
Nh

+ Ea
Nh

+ Ia
Nh

+ Ra
Nh

+ Se
Nh

+ Ee
Nh

+ Ie
Nh

= 1 then d
dt

(
Sa
Nh

)
+ d

dt

(
Ea
Nh

)
+ d

dt

(
Ia
Nh

)
+ d

dt

(
Ra
Nh

)
+ d
dt

(
Se
Nh

)
+ d

dt

(
Ee
Nh

)
+ d

dt

(
Ie
Nh

)
= −βaRa

Nh
< 0. Now, we show that Ω2 is forward invariant for all(

Sa
Nh

,
Ea
Nh

,
Ia
Nh

,
Ra
Nh

,
Se
Nh

,
Ee
Nh

,
Ie
Nh

,
Sv
Nv

,
Ev
Nv

,
Iv
Nv

)
∈ Ω1,

then dNh
dt > 0 if λh > µh and dNv

dt > 0 if λv > µv. It is easy to see that

lim
t→∞

supNv(t) ≤
λv − µv
µv

and lim
t→∞

supNh(t) ≤
λh − µh +

√
(λh − µh)2 + 4µh
µh
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Figure 1: Flow diagram of ten compartmental model

We conclude that the solutions of (1)- (10) exist globally in a domain Ω, then it is epidemiolog-
ically and mathematically well-posed.
Let X(t) = (Se(t), Ee(t), Ie(t), Sa(t), Ea(t), Ia(t), Ra(t), Sv(t), Ev(t), Iv(t)) and

φ : Γ→ Ψ and X :7→ X
′

such that φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10), where

φ1 =
dSe
dt

= λeNh − Se (ΥϕveIv + µh) , (11)

φ2 =
dEe
dt

= ΥIvϕveSe − Ee (γe + µh) , (12)

φ3 =
dIe
dt

= γeEe − Ie (αe + µh) , (13)

φ4 =
dSa
dt

= (λh − λe)Nh + ΩaRa − Sa (ΥϕvaIv + µh) , (14)

φ5 =
dEa
dt

= SaΥϕvaIv − Ea (γa + µh) , (15)

φ6 =
dIa
dt

= γaEa − Ia (µh + αa) , (16)

φ7 =
dRa
dt

= (αa + αe) Ia −Ra (Ωa + µh) , (17)

φ8 =
dSv
dt

= λvNv − Sv ((ϕevIe + ϕavIa) Υ + µv) , (18)

φ9 =
dEv
dt

= (ϕevIe + ϕavIa) ΥSv − Ev (γv + µv) , (19)

φ10 =
dIv
dt

= γvEv − Ivµv. (20)
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Then, (1) - (10) can be written in the form of the following

X
′
(t) = φ(X(t)) : X(0) = (Se0, Ee0, Ie0, Sa0, Ea0, Ia0, Ra0, Sv0, Ev0, Iv0) ∈ Γ

We follow the proof done in Chitnis et al. (2006). Suppose that there exists t1 and t∗ with

t1 < t∗ such that Se (t1) = 0, dSe(t)
dt < 0 in (t1, t

∗) where all the ten compartments are positives.
Then from (1),

dSe (t)

dt
= λeNh − Se (t) ΥIv (t)ϕev − Se (t)µh ≥ λeNh ≥ 0

which is contradiction. Hence, Se (t) ≥ 0. Suppose that there exist

t1 = Sup {t > 0 : Sa, Ia, Ea, Ra, Se, Ie, Re, Sv, Ev, Iv > 0} .

Then from equation (2), we get

d

dt

(
Ee(t)e

(γe+µh)t
)

= (ΥIv(t)Se(t)) e
(γe+µh)t. (21)

Integrating equation (21) from 0 to t1, we have

Ee(t)e
(γe+µh)t = Ee0 +

∫ t1

0
(ΥIv(θ)Se(θ)ϕve) e

(γe+µh)θdθ. (22)

Multiply both sides of (22) by e−(γe+µh)t1 , then we have get (23)

Ee(t) (t1) = (Ee0) e−(γe+µh)t1 + e−(γe+µh)t1∫ t1

0
(ΥIv(θ)Se(θ)ϕve) e

(γe+µh)θdθ ≥ 0. (23)

Since Ee(t) > 0 for all t ≥ 0, then from equation (3) we have

⇒ dIe(t)

dt
≥ − (αe + µe) Ie

⇒ dIe(t)

Ie
≥ − (αe + µe) dt

⇒ Ie(t) ≥ e−(αe+µe)t ≥ 0. (24)

Let us show that Sa(t) ≥ 0 for all t ≥ 0. Suppose that there exists t1 and t∗ with t1 < t∗ such

that Sa (t1) = 0, dSa(t)
dt ≤ 0 and from equation (4),

dSa(t)

dt
= (λe − λh)Nh + ΩaRa(t)− SaΥϕvaIv(t)− Sa(t)µh ≥ 0.

which is contradiction. Hence, Sa(t) ≥ 0, ∀t ≥ 0. From (5)

d

dt

(
Ea(t)e

(γa+µh)t
)

= (Sa(t)ΥIv(t)ϕva) e
(γa+µh)t. (25)

Integrating equation (25) from 0 to t1, we have(
Ea(t1)e(γa+µh)t1

)
= Ea0 +

∫ t1

0
(Sa(t)ΥIv(θ)ϕva) e

(γa+µh)θdθ. (26)

Multiply both sides of equation (26) by e(γa+µh)t1 , then we have get

Ea(t1) = (Ea0) e(γa+µh)t1 + e(γa+µh)t1

∫ t1

0
(Sa(t)ΥIv(θ)ϕva) e

(γa+µh)θdθ ≥ 0.
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Hence, Ea(t) ≥ 0 for all t ≥ 0. Since Ea(t) > 0 for all t ≥ 0 and from (6)

⇒ dIa(t)

dt
≥ −Ia (αa + µh)

⇒ dIa(t)

Ia
≥ − (αa + µh) dt

⇒ Ia(t) ≥ (Ia0)e−(αa+µh)t ≥ 0 (27)

Hence, Ia(t) > 0 for all t ≥ 0. Since Ia(t) > 0, ∀t ≥ 0 and from (7)

⇒ dRa(t)

dt
≥ −Ra (Ωa + µh)

⇒ dRa(t)

Ra
≥ − (Ωa + µh) dt

⇒ Ra(t) ≥ (Ra0)e−(Ωa+µh)t ≥ 0. (28)

It is simple observe that Sv(t) > 0 for all t ≥ 0. Suppose that there exists t1 and t∗ with t1 < t∗

such that Sv (t1) = 0, dSv(t)
dt < 0 and every the ten compartments are affirmative for t1 < t < t∗.

Then from equation (8),

dSv(t)

dt
= λvNv − Sv(t)ϕevIe(t)− µvSv(t)−ΥϕavSv(t)Ia(t) > 0

which is contradiction, hence Sv(t) > 0, Ie > 0, Ia > 0, Sv > 0, ∀t ≥ 0

⇒ dEv(t)

dt
≥ −Ev(t) (γv + µv)

⇒ dEv(t)

Ev
≥ − (γv + µv) dt

⇒ Ev(t) ≥ (Ev0)e−(γv+µv)t > 0 (29)

Hence, Ev(t) > 0 for all t ≥ 0. Since Ev(t) > 0 for all t ≥ 0 (10)

⇒ dIv(t)

dt
≥ −Iv(t)µv

⇒ dIv(t)

Iv
≥ −µvdt

⇒ Iv(t) ≥ (Iv0)e−µvt > 0 (30)

Hence, Iv(t) > 0, ∀t ≥ 0. Therefore, the solution of the system equation (1)- (10) is positive.
Since the total number of humans population Nv(t) is the sum of Se(t), Ee(t), Ie(t), Sa(t), Ea(t),
Ia(t) and Ra(t) and the total number of mosquito population Nv(t) is the sum of Sv(t), Ev(t) and
Iv(t), Since Se(t)+Ee(t)+Ie(t)+Sa(t)+Ea(t)+Ia(t)+Ra(t) = Nh and Sv(t)+Ev(t)+Iv(t) = Nv,
then Se(t) ≤ Nh, Ee(t) ≤ Nh, Ie(t) ≤ Nh, Sa(t) ≤ Nh, Ea(t) ≤ Nh, Ia(t) ≤ Nh, Ra(t) ≤ Nh, and
Sv(t) ≤ Nv, Ev(t) ≤ Nv, Iv(t) ≤ Nv, ∀t ≥ 0. Thus X is bounded. Therefore, (1)-(10) has a
unique solution which is non negative and bounded.

4 Equilibria points and Reproductive Number

4.1 Equilibria points

Theorem 2. The model (1)–(10) has at least two equilibrium solutions, one disease free and
one endemic equilibria.
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Proof. The equilibrium solution of the system is obtained by solving

dSe
dt

=
dEe
dt

=
dIe
dt

=
dSa
dt

=
dEa
dt

=
dIa
dt

=
dRa
dt

=
dSv
dt

=
dEv
dt

=
dIv
dt

= 0.

Therefore, we set the system equation (1)- (10) equal to zero, then

λeNh − Se (ΥϕveIv + µh) = 0. (31)

ΥSeϕveIv − Ee (γe + µh) = 0. (32)

γeEe − Ie (αe + µh) = 0. (33)

(λh − λe)Nh + ΩaRa − Sa (ΥϕvaIv + µh) = 0. (34)

SaΥϕvaIv − Ea (γa + µh) = 0. (35)

γaEa − Ia (µh + αa) = 0. (36)

(αa + αe) Ia − (Ωa + µh)Ra = 0. (37)

λvNv − SvΥ (ϕevIe + ϕavIa)− Svµv = 0. (38)

(ϕevIe + ϕavIa) ΥSv − Ev (γv + µv) = 0. (39)

γvEv − Ivµv = 0. (40)

From equation (31), we have obtained equation (41)

Se =
λeNh

ΥϕveIv + µh
. (41)

From equation (32) and (41), we have obtained the subsequent result

Ee =

(
Υϕve
γe + µh

)(
λeNh

ΥϕveIv + µh

)
Iv (42)

From equation (37), we have get the following result

Ra =

(
αa + αe

Ωa

)
Ia. (43)

Substitute equation (43) into (35), we get

Sa =

(
λh − λe

ΥϕvaIv + µh

)
Nh +

(
αa + αe

ΥϕvaIv + µh

)
Ia. (44)

From equation (33), we have

Ea =
(αa + µh)Ia

γa
, (45)

and from (38), we have

Sv =
λvNv

ΥϕevIe + µv + ϕavIeΥ
(46)

From equation (40), we get

Ev =
µvIv
γv

. (47)

In (47), if Iv = 0, we have Ev = 0, and from (41), we have get

S∗e =
λeNh

µh
, (48)

From equation (44), we have get

S∗a =

(
λh − λe
µh

)
Nh, (49)
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and from equation (46), we obtained

S∗v =
λvNv

µv
. (50)

From (45) if Ia = 0, and from (42), (45), (43) and (47), we have Ee = 0, Ea = 0, Ra = 0, Ie = 0
and Ev = 0. Therefore, we have obtained the disease free equilibrium

Xdfe = (S∗e , 0, 0, S
∗
a, 0, 0, 0, S

∗
v , 0, 0)

where S∗e , S∗a and S∗v are defined in (48), (49) and (50) respectively. To obtain the endemic
equilibrium, from (38) and (39), we get

E∗∗v =
λvNv

γv + µv
. (51)

Substituting (51) into (31), we obtain

I∗∗v =
γvλvNv

µv (γv + µv)
. (52)

Substitution of (52) into (41), yields

S∗∗e =

(
λeNh

Υϕveγv

)(
µv (γv + µv)

λvNv

)
. (53)

Equations (53) and (32), give

E∗∗e =
Nhλe
µh + γe

. (54)

Substituting (54) into (33), we get

I∗∗e =

(
γeλe

αe + µh

)(
Nh

γe + µh

)
. (55)

From (37), we get

Ia =

(
Ωa + µh
αa + αe

)
Ra. (56)

Substitution of (56) into (34), yields

Ea =

(
µh + αa
γa

)(
µh + αa
γa

)(
Ωa + µh
αa + αe

)
Ra. (57)

Substitute (57) into (34), we have get the subsequent (58)

Sa =

(
γa + µh
γa

)(
Ωa + µh
αa + αe

)
Ra. (58)

Substitute (58) into (35), we have

R∗∗a =
(αa + αe)(λe − λh)Nh

Ωa (αa + αe)− (γa + µh) (µh + αa) (Ωa + µh)
. (59)

By substituting (59) into (37), we have obtained (60)

I∗∗a =
(Ωa + µh) (λe − λh)Nh

Ωa (λe + λa)− (λa + µh) (µh + αa) (Ωa + µh)
. (60)
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By substituting (60) into (34), we have get (61)

E∗∗a =
(µh + αa) (Ωa + µh) (λe − λh)Nh

γa ((αa + αe)− (γa + µh) (µh + αa) (Ωa + µh))
. (61)

By substituting (60) into (44), we have

S∗∗a =

(
(µh + αe) (Ωa + µh) (λe − λh)Nh

Ωa (αe + αa)− (γa + µh) (µh + αa) (Ωa + µh)

)(
µv (γv + µh) (γa + µh)

γvλvNvΥϕvaγa

)
. (62)

By substituting (55) (60) into (40), gives

S∗∗v =
λvNv ((Ωaαa + Ωaαe − (γa + µh) (µh + αe) (Ωa + µh))) ((αe + µh) (γe + µh))

ϕev ((Ωa + µh) (λe − λh) (αe + µh) (γe + µh) + (γeλeNh) (Ωa (αe + αe)− (γa + µh) (µh + αa)))

Consequently, the endemic equilibrium point of the system (1)–(10) is

(E∗∗v , I
∗∗
v , S

∗∗
e , E

∗∗
e , I

∗∗
e , R

∗∗
a , I

∗∗
a , E

∗∗
a , S

∗∗
a , S

∗∗
v ) ,

where S∗∗e , E
∗∗
e , I

∗∗
e , S

∗∗
a , E

∗∗
a , I

∗∗
a , R

∗∗
a , S

∗∗
v , E

∗∗
v and I∗∗v are defined in (51) , (52), (53), (54), (55),

(59), (60), (61), (62) and (63) respectively.

4.2 Reproductive Number

Let us denote the rate of the disease spread from e to e by βee, from a to a by βaa, from v to v
by βvv, from a to e by βae, from e to a by βea, from e to v by βev, from v to e by βve, from v
to a by βva and from v to a by βva. We use the next generation operator approach to describe
the reproductive number as the number of secondary disease that one transferable individual
would make above the period of the transferable period, given that everyone else is susceptible
and the next-generation matrix β can be constructed like in Fernandes Lopez et al. (2002)

β =

 βee βae βve
βea βaa βva
βev βav βvv

 (63)

where every element βfg characterises the predictable number of secondary suitcases in host
indexed by g formed by a characteristic primary case in the group indexed by f in a com-
pletely susceptible population, where g and f can be a, e, v. Subsequently, the non-diseases are
βee, βaa, βvv, βea and βae. Thus

βee = βaa = βvv = βea = βae = 0. (64)

and the diseases are βev, βea, βav and βva

βev 6= 0, βve 6= 0, βav 6= 0, βva 6= 0. (65)

Thus using (64),(65) and (63), we have

β =


0 0 βve
0 0 βva

βev βav 0

 .

The βfg’s are the result of the mean duration of the transferable life span, the likelihood of
transmission per get in touch with, the continued existence possibility until the transferable state
and the contact number per unit time. When a disease is recently introduced in a population
by one infected individual then R0 defines as the average number of secondary cases produced
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by that infected during his complete infectious period. We assume that a single newly infected
mosquito in the population at the disease free equilibrium point and let βva be the predictable
number of susceptible semi-resistant humans that this mosquito will infect, we have

βva =

(
γv

µv + γv

)(
ΥSa
Nh

)(
ϕva
µv

)
(66)

and βve be the predictable number of vulnerable non-resistant humans for which this mosquito
will contaminate, we also have

βve =

(
γv

µh + γv

)(
ΥSe
Nh

)(
ϕve
µv

)
(67)

βav =

(
γa

µh + γa

)(
ΥSv
Nh

)(
ϕav

µh + αa

)
(68)

If we start with a single newly infected non-resistant human, then we have

βev =

(
γe

µh + γe

)(
ΥSv
Nh

)(
ϕev

µh + αe

)
(69)

The reproductive number, R0, for malaria model (1) to (10) precisely is the spectral radius of β
in Diekmann et al. (1990), then we get

R2
0 = βevβve + βavβva (70)

where βva, βve, βav and βev are defined in (66), (67), (68) and (69) respectively. At the disease-
free equilibrium we assume that there is one infected non-immune human and there are non
semi-immune human, we have

Sa = 0 and Se = Nh. (71)

then (67), (69) and (71) yield
βve = 0. (72)

Substituting (72) into equation (70), we obtain

R0 =
√

(βva) (βav). (73)

And if the spread from semi-resistant humans to mosquitoes is zero then as of likewise we have

βav = 0 and βva = 0. (74)

Subsequently equation (74) into equation (70), then we acquired (75)

R0 =
√

(βve) (βev). (75)

Let R1 be the reproductive number for an infection due to βev or βve, then equation (70) becomes

R1 =
√

(βve) (βev). (76)

and let R2 be the reproductive number for the pollution due to βav or βva, then equation (70)
becomes

R2 =
√

(βva) (βav). (77)

Definition: We define the reproductive number, R0, by

R0 =
√
R2

1 +R2
2 (78)

where R1 and R2 are defined in equation (76) and (77) respectively.
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5 Stability of equilibria

5.1 Stability of disease free equilibrium

Theorem 3. The disease free equilibrium point is unstable if R0 > 1 and globally asymptotically
stable when R0 ≤ 1.

Proof. The Proof follows van den Driessche and Watmough (2002). We rewrite equations (1)–
(10) in the form of dS

dt = ψ1(S, I) and dI
dt = ψ2(S, I) wherever S = (Se,Sa, Sv) and I =

(Ee, Ie, Ea, Ia, Ra, Ev, Iv). Suppose B be the Jacobean matrix of ψ = (ψ1, ψ2) calculated at the
DFE (S, 0). Then we obtained

B =

(
B1 −B2 0
B1 +B2 B3

)
where

B1 =



0 0 0 0 0 Mve

0 0 0 0 0 0
0 0 0 0 0 Mva

0 0 0 0 0 0
0 0 0 0 0 0
0 Mev 0 Mav 0 0



B2 =



K1 0 0 0 0 0
−νe K3 0 0 0 0

0 0 K2 0 0 0
0 0 −νv K4 0 0
0 −αe 0 −αa 0 0
0 0 0 0 −νv λv


B3 =

(
B̂3 0
0 λvSv − µv

)
B̂3 =

(
−µhSe − µh λh − µhSe
−µhSa −µhSa − µh

)
where K1 = νe + µh,K2 = νa + µh,K3 = µh + αe,K4 = αa + µh, Mev = Υϕev

Sv
Nh
,Mav =

Υϕav
Sv
Nh
,Mve = Υϕve

Se
Nh
,Mva = Υϕva

Sa
Nh

. The DFE is unstable if B has at least one eigenvalues
with positive real part and close by asymptotically stable if every eigenvalues of B have negative
real parts. The eigenvalues of B are −Svµv < 0 and those of B̂3 and B1 −B2. We know that

Tr
(
B̂3

)
= −µhSe − µh − µhSa − µh < 0 and (79)

det
(
B̂3

)
= µh (µh + µhSe − λhSa + µhSa + 2µhSeSa) > 0 (80)

As a result all eigenvalues of B̂3 has strictly negative real components. Thus, the stability
of the DFE depends on the eigenvalues of B1 − B2. We observe that B2 has negative off-
diagonal components and positive column sums. AndB2 is a non-singularM -matrix Berman and
Plemmons (1994). Furthermore, B1 is a non-negative matrix, then as of van den Driessche and
Watmough (2002) we obtain the following s (B1 −B2) < 0 ⇔ ρ

(
B1B

−1
2

)
< 1 or s (B1 −B2) >

0 ⇔ ρ
(
B1B

−1
2

)
> 1 where s(Q) represents the maximum real component of all eigenvalues of

the matrix Q. Thus

B−12 B1 =



0 0 0 0 βve 0
0 0 0 0 0 0
0 0 0 0 βva 0
0 0 0 0 0 0
0 0 0 0 0 0
βev 0 βav 0 0 0


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where βve, βva, βav and βev are defined in (67), (66), (68), and (69), respectively. In this
case R0 = ρ

(
B−1

2 B1

)
. Therefore, the disease free equilibrium point is asymptotically stable if

R0 ≤ 1, the disease dies out and when for R0 > 1 the disease free equilibrium point is unstable
and consequently the disease persists.

5.2 Effort required to control malaria

The control reproduction number R0 is the threshold which gives an indication on how control
effort can be focussed and on which host the appropriate action should be taken. In Section 4 we
calculated the control reproduction number R0 specific to each host type. It was established in
Roberts and Heesterbeek (2003) the expected number of cases of individuals of kind l, caused by
one infected individual of kind l in a fully susceptible population, either directly or not directly.
Our model considers three host kinds: semi-resistant, non-resistant and mosquito. If we directly
apply R0 to control malaria, we must decrease R0 to values less than one to control malaria.
In every condition, we are required to target the control of each the sub-groups to decrease
R0 below one. That it is very difficult and expensive to control all sub-groups to reduce the
impact of malaria: can we control malaria by targetting only one sub-group? Using the method
developed in Heesterbeek and Roberts (2007), we calculate the reproductive number ωe, ωa, ωv
for each host. We denote by ρ(Q) the spectral radius of a matrix Q. In Heesterbeek and Roberts
(2007), ωI = ν

′
IνI (I(1− β)− β`I)−1 for all l = e, a, v, where

νe = (1 0 0)
νa = (0 1 0)
νv = (0 0 1)

, `e =

 1 0 0
0 0 0
0 0 0

 , `a =

 0 1 0
0 0 0
0 0 0

 , `v =

 0 0 0
0 0 0
0 0 1


and β is the next-generation matrix given by (63). In Heesterbeek and Roberts (2007), ωl is
defined if the host kind β 6= l cannot hold by themselves an epidemic. Logically, it is shown
that ωl is well defined if ρ((I − `I)β) < 1. In reality, if ωl is defined, decline of ωl below one is
adequate to reduce R0 below 1, by only target a control to the specific host l. Their hypothesis
is suitable when the model cannot show a backward bifurcation. But if ρ((I − `I)β) < 1. Then
ωe, ωa and ωv are given by

ωe =
R2

1

I−R2
2

and R2 = βρ(I − `e)

ωa =
R2

2

I−R2
1

and R1 = βρ(I − `a)
ωv = R2

0 and βρ(I − `v) = 0
(81)

Consider χ > 0. The same reasoning can be applied when χ < 0 by setting ξ = 1. It is clear
that ωe is well defined if R2 < ξ, ωa is also well defined if R1 < ξ and as ρβ(I − `v) = 0 < 1, ωv
is always well defined without condition upon the semi-resistant or non-resistant. Then

1. In regions where R1 < ξ and R2 < ξ such as 1 < R0 <
√

2ξ or 1 < ωv < 2ξ2, it is adequate
to target a control of one of the three host types to eliminate malaria.

2. In regions where R1 < ξ and R2 > ξ, it is adequate to target a control of semi-resistant or
mosquito host types to control malaria.

3. In regions where R1 > ξ and R2 < ξ, it is adequate to target a control of non-resistant or
mosquito host to control malaria.

4. In regions where R1 > ξ and R2 > ξ, we need to target a control of mosquito and
simultaneously semi-resistant and non-resistant host.
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Assuming that the malaria control program aims to reduce the number of infectious in a
given host l, l = a, e, v following one of the conditions (1)− (4). Recall that the next generation
matrix coefficients, denoted by βjl, represent the expected number of individuals of host of
type l, which would be infected by a single infectious host type j. Assuming that the above
controls act linearly on βjl, one can linearly reduce the number of susceptible host of type l

with l, j = a, e, v. A proportion sl > 1 − ξ2

ωl
of susceptible host type l need to be control to

eliminate over time the malaria in the three populations in (see Heesterbeek and Roberts (2007)
when ξ = 1). For the semi-resistant or non-resistant, this control plan is feasible by using a
vaccine. Concerning the mosquitoes, the vector control measures such as insecticide-treated
nets in addition to indoor residual spraying with insecticides is possible. In regions where the
condition (1) is satisfied, it is adequate to permanently protect a proportion of semi-resistant

greater than 1− ξ2

ωa
or a proportion of non-resistant greater than 1− ξ2

ωe
, or eliminate a fraction

of mosquitoes greater than 1− ξ2

ωv
. In regions where the condition (2) is satisfied, it is adequate

to permanently protect a proportion of semi-resistant greater than 1− ξ2

ωa
or eliminate a fraction

of mosquitoes greater than 1− ξ2

ωv
. In regions where the condition (3) is satisfied, it is adequate

to permanently protect a proportion of non-resistant greater than 1− ξ2

ωe
or eliminate a fraction

of mosquitoes greater than 1− ξ2

ωv
. In regions where the condition (4) is fulfilled, it is adequate

to permanently eliminate a proportion of mosquitoes greater than 1 − ξ2

ωv
at birth to eradicate

malaria or simultaneously protect the non-resistant and the semi-resistant. Our model suggests
that in a region of low malaria transmission, it is adequate to target a control to one of exact host
type to eradicate malaria. In widespread region where the birth rate of semi-resistant humans
is very large then the birth rate of non-resistant humans then malaria can always be controlled
throughout the non-resistant. In an widespread region wherever the birth rate of non-resistant
humans is very large then the birth rate of semi-resistant humans then malaria can forever be
controlled throughout the semi-resistant.

6 Numerical Simulation

Figure 2 is plot the constraints in Table 3 in region two, R1 = 2.62339 > 1, R2 = 1.4225 > 1
and R0 = 2.97458 > 1. In Figure 3, the constraints in Table 3 in region one R1 = 0.445567 < 1,
R2 = 0.36789 < 1, R0 = 0.73795 < 1, ωe = 1.6876, ωa = 17.29 and ωv = 1.3937 with Ee = 0,
Ea = 0, Ie = 2, Ia = 1, Ra = 29, Ev = 18, Iv = 13.00, Nh = 395 and Nv = 13, 000. A
mathematical imitation R0 = 2.9838, R1 = 2.6449 and R2 = 1.4245 with primary situation:
Ee = 0, Ea = 0, Ie = 2, Ia = 1, Ra = 29, Ev = 190, Iv = 11, Nv = 396 and Nv = 13, 000 is plotted
with constraint worths defined in Table 3 region one is specified in Figure 2. Figure 4 viewing
the widespread stability values for the quantity of transferable non-resistant humans when we
used the constraints in Table 3 on region two.

153



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.2, 2023

Table 3: The Base Line principles and variety for ten dimensional malaria model

No parameter (constraint) region one region two low high

1 λv 0.23 0.23 0.4 0.39

2 ϕve 0.0430 0.092 0.033 0.45

3 ϕva 0.044 0.044 0.03 0.49

4 ϕev 0.33 0.66 0.078 0.96

5 ϕav 0.09 0.6600 0.083 0.93

6 γe 0.3 0.3 0.087 0.45

7 γa 0.09 0.09 0.088 0.04

8 γv 0.091 0.094 0.094 0.33

9 αa 0.03 0.03 0.0025 0.035

10 αe 0.007 0.006 0.0066 0.087

11 µv 0.055 0.066 0.008 0.9

12 Υ 0.48 0.49 0.55 0.77

14 Ωa 0.88× 10−5 0.45× 10−4 0.33× 10−3 0.77× 10−6

Figure 2: Infectious and semi-infectious class: R1 > 1 and R2 > 1

Figure 3: Infectious and semi-infectious class: R1 < 1 and R2 < 1
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Figure 4: Forward bifurcation

7 Conclusion

In this paper, we studied a ten dimensional model for malaria transmission. We divided the
human host into two major kinds: we named the first host kind, non-resistant, which included
every human who do not have resistance against malaria; we named the second host kind
semi-resistant. On the other hand, we divided partly-resistant humans into vulnerable (sus-
ceptible), uncovered (exposed), transferable (infectious) and resistant (recovered). We divided
non-resistant humans being into vulnerable (susceptible), uncovered (exposed), transferable (in-
fectious). We divided the mosquito population into three classes: (susceptible), uncovered
(exposed), transferable (infectious). We obtained an explicit formula for the reproductive num-
ber, R0, derived the local stability of the DFE point. We described R1, the influence of the
transmission non-resistant-mosquito-non-resistant and R2, the weight of the transmission semi-
resistant-mosquito-semi-resistant. Consequently, the reproductive number for the whole pop-
ulation is a square root of the summation of the square of these weights for the two contact
types. For R0 < 1, the disease free equilibrium point is globally asymptotically stable, implying
that malaria dies out. And for R0 > 1, malaria persists in the population. The simulations are
carried out to illustrate the results and explore the possible behaviour of the formulated model.
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